Computational multiscale modeling in the IUPS Physiome Project: Modeling cardiac electromechanics
نویسندگان
چکیده
We present a computational modeling and numerical simulation framework that enables the integration of multiple physics and spatiotemporal scales in models of physiological systems. This framework is the foundation of the IUPS (International Union of Physiological Sciences) Physiome Project. One novel aspect is the use of CellML, an annotated mathematical representation language, to specify modeland simulation-specific equations. Models of cardiac electromechanics at the cellular, tissue, and organ spatial scales are outlined to illustrate the development and implementation of the framework. We quantify the computational demands of performing simulations using such models and compare models of differing biophysical detail. Applications to other physiological systems are also discussed.
منابع مشابه
Bioinformatics, multiscale modeling and the IUPS Physiome Project
Multiscale modeling is required for linking physiological processes operating at the organ and tissue levels to signal transduction networks and other subcellular processes. Several XML markup languages, including CellML, have been developed to encode models and to facilitate the building of model repositories and general purpose software tools. Progress in this area is described and illustrate...
متن کاملThe IUPS Physiome Project: a framework for computational physiology.
The IUPS Physiome Project is an internationally collaborative open-source project to provide a public domain framework for computational physiology, including the development of modelling standards, computational tools and web-accessible databases of models of structure and function at all spatial scales. A number of papers in this volume deal with the development of specific mathematical model...
متن کاملCardiac cell modelling: observations from the heart of the cardiac physiome project.
In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiologi...
متن کاملIntegrative Systems Models of Cardiac Excitation–Contraction Coupling Alternans and Arrhythmias: From Cells to the Heart Computational Models Reduce Complexity and Accelerate Insight Into Cardiac Signaling Networks Whole Heart Modeling: Applications to Cardiac Electrophysiology and Electromechanics
Excitation–contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca transport. The complexity and integrative nature of heart cell electrophysiology and Ca cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems bio...
متن کاملBioengineering Modeling and Computer Simulation
A number of large research initiatives (IUPS Physiome, EuroPhysiome, SimBio, etc.) aim to develop computer models of human physiology that span multiple dimensional and temporal scales. The Living Human Project (LHP) is a three-year international collaboration that will develop such multiscale predictive models for the musculoskeletal apparatus. The aim of this paper is to update the reader on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IBM Journal of Research and Development
دوره 50 شماره
صفحات -
تاریخ انتشار 2006